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1 Sets

In mathematics, any collection or system of objects is called a set.
The objects a set A is made of are called elements of the set A. If x is

one of these objects we say that x is an element of A (or, that x belongs to
A), and denote x ∈ A.

If y is not an element of A we write y 6∈ A (read: y does not belong to
A).

Example of sets:
the collection of chairs in room CC226, an interval (a, b) (which is the

collection of all real numbers x with a < x < b), the set consisting of the
numbers 2, 3, 4, 5 and 6: {2, 3, 4, 5, 6} (when enumerating the elements of a
set, you do so between { and }).

The empty set is the set with no elements; it is denoted ∅.

1.1 Subsets

Given two sets A, B we say that A is included in B (or that A is a subset
of B) and denote A ⊂ B, if any element of A is also an element of B:

A ⊂ B if and only if x ∈ A implies x ∈ B

If A ⊂ B we can also say that B includes A, and denote B ⊃ A.
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Examples:
1) The set of natural numbers is a subset of the real numbers.
2) (1, 3) ⊂ [1, 3) ⊂ [1, 4)
3) The empty set is included in any set: ∅ ⊂ A.
4) A ⊂ A.

1.2 Operations with sets

Union A ∪B is the set which collects all elements of A and B:

x ∈ A ∪B if and only if x ∈ A or x ∈ B

Examples:
1) {0, 1, 2, 3, 4} ∪ {3, 4, 5, 6} = {1, 2, 3, 4, 5, 6}.
2) The domain of the function f(x) = 1/x is the set (−∞, 0) ∪ (0, +∞).
3) ∅ ∪ A = A
Note: A ∪B = B ∪ A.
Intersection A ∩ B is the set which collects all elements common to A

and B:
x ∈ A ∩B if and only if x ∈ A and x ∈ B

Examples:
1) {0, 1, 2, 3, 4} ∩ {3, 4, 5, 6} = {3, 4}
2) [0, 2] ∩ [1, 2) = [1, 2)
3) ∅ ∩ A = ∅
Note: A ∩B = B ∩ A.
Difference A \B is the set which collects all elements of A which do not

belong to B:

x ∈ A \B if and only if x ∈ A and x 6∈ B

Examples:
1) {0, 1, 2, 3, 4} \ {3, 4, 5, 6} = {0, 1, 2}.
2) [0, 10] \ [1, 2] = [0, 1) ∪ (2, 10]
3) A \ A = ∅, A \ ∅ = A.
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2 Real numbers: decimal representation

Natural numbers: 0, 1, 2, 3, 4, 5, 6,...
Integer numbers: ...− 6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, ...
Rational numbers: these are ratios of two integers: m/n where m, n

are integers and n 6= 0.
Decimal representation of rational numbers: doing long division it turns

out that eventually decimal repeat periodically.
Examples:

1

3
= 0.333333... = 0.(3)

139

330
= 0.421212121... = 0.4(21)

5

4
= 1.25 = 1.2500000... = 1.25

Conversion from decimal representation to fraction:

1.25 = 1 +
2

10
+

5

100

0.421 = 0 +
4

10
+

2

100
+

1

1000

0.4(21) = 0 +
4

10
+

21

990
A wrinkle: repeating 9’s is the same as a 0, for example

0.499999... = 0.4(9) = 0.5 , 0.999999... = 0.(9) = 1.0 and 2.34(9) = 2.35

Irrational numbers: integral part followed by an infinity of decimals,
not ending by a repeating sequence. For example

3.141592653589793238...

These are the first digits of a special number which we call π. The number
π is defined through its properties (π is the ratio between the circumference
of any circle and its diameter), and not through its decimals. As another
example,

√
2 = 1.4142135623730... is that number whose square is 2; this

number turns out to be irrational.
When we do calculations for practical applications, we do use decimals,

but we stop after a finite number of decimals: in fact we take an approxima-
tion by a rational number.

3



3 Bounds for sets of numbers

3.1 Upper bounds of a set

Consider S a set of real numbers.
S is called bounded above if there is a number M so that any x ∈ S is

less than, or equal to, M : x ≤ M . The number M is called an upper bound
for the set S.

Note that if M is an upper bound for S then any bigger number is also
an upper bound.

Not all sets have an upper bound. For example, the set of natural numbers
does not.

A number B is called the least upper bound (or supremum) of the
set S if:

1) B is an upper bound: any x ∈ S satisfies x ≤ B, and
2) B is the smallest upper bound. In other words, any smaller number is

not an upper bound:

if t < B then there is x ∈ S with t < x

Notation:
B = sup S = sup

x∈S
x

Upper bounds of S may, or may not belong to S.
For example, the interval (−2, 3) is bounded above by 100, 15, 4, 3.55, 3.

In fact 3 is its least upper bound.
The interval (−2, 3] also has 3 as its least upper bound.
When the supremum of S is a number that belongs to S then it is also

called the maximum of S.
Examples:
1) The interval (−2, 3) has supremum equal to 3 and no maximum; (−2, 3]

has supremum, and maximum, equal to 3.
2) The function f(x) = x2 with domain [0, 4) has a supremum (equals

42), but not a maximum. The function g(x) = x2 with domain [0, 4] has (not
only a supremum, but also) a maximum; it equals g(4) = 42.

The interval (−2, +∞) is not bounded above.
If the set S is not bounded above (also called unbounded above) we write

(conventionally)
sup S = +∞
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3.2 Bounded sets do have a least upper bound.

This is a fundamental property of real numbers, as it allows us to talk about
limits.

Theorem Any nonempty set of real numbers which is bounded above has
a supremum.

Proof.
We need a good notation for a real number given by its decimal repre-

sentation. A real number has the form

a = a0.a1a2a3a4... where a0 is an integer and a1, a2, a3, ... ∈ {0, 1, 2, ...9}

To eliminate ambiguity in defining real numbers by their decimal repre-
sentation, let us decide that if the sequence of decimals ends up with nines:
a = a0.a1a2...an9999... (where an < 9) then we choose this number’s deci-
mal representation as a = a0.a1a2...(an + 1)0000.... (For example, instead of
0.4999999.. we write 0.5.)

Let S be a nonempty set of real numbers, bounded above.
Let us construct the least upper bound of S.
Consider first all the approximations by integers of the numbers a of S:

if a = a0.a1a2... collect the a0’s. This is a collection of integer numbers. It is
bounded above (by assumption). Then there is a largest one among them,
call it B0.

Next collect only the numbers in S which begin with B0. (There are
some!) Call their collection S0.

Any number in S \S0 (number of S not in S0) is smaller than any number
in S0.

Look at the first decimal a1 of the numbers in S0. Let B1 be the largest
among them. Let S1 be the set of all numbers in S0 whose first decimal is
B1.

Note that the numbers in S1 begin with B0.B1

Also note that any number in S \ S1 is smaller than any number in S1.
Next look at the second decimal of the numbers in S1. Find the largest,

B2 etc.
Repeating the procedure we construct a sequence of smaller and smaller

sets S0, S1, S2, ...Sn, ...

S ⊃ S0 ⊃ S1 ⊃ S2 ⊃ ... ⊃ Sn ⊃ ...

Note that every set Sn contains al least one element (it is not empty).
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At each step n we have constructed the set Sn of numbers of S which
start with B0.B1B2...Bn; the rest of the decimals can be anything. Also all
numbers in S \ Sn are smaller than all numbers of Sn. (The construction is
by induction!)

We end up with the number B = B0.B1B2...BnBn+1....
We need to show that B is the least upper bound.
To show it is an upper bound, let a ∈ S. If a0 < B0 then a < B.

Otherwise a0 = B0 and we go on to compare the first decimals. Either
a1 < B1 therefore a < B or, otherwise, a1 = B1. Etc. So either a < B or
a = B. So B is an upper bound.

To show it is the least (upper bound), take any smaller number t <
B. Then t differs from B at some first decimal, say at the nth decimal:
t = B0.B1B2...Bn−1tntn+1... and tn < Bn. But then t is not in Sn and Sn

contains numbers bigger than t. QED

3.3 Lower bounds

By exchanging ”less than” < with ”greater than” > throughout the section
§3.1 we can similarly talk about lower bounds.

Here it is.
S is called bounded below if there is a number m so that any x ∈ S is

bigger than, or equal to m: x ≥ m. The number m is called a lower bound
for the set S.

Note that if m is a lower bound for S then any smaller number is also a
lower bound.

A number b is called the greatest lower bound (or infimum) of the
set S if:

1) b is a lower bound: any x ∈ S satisfies x ≥ b, and
2) b is the greatest lower bound. In other words, any greater number is

not a lower bound:

if b < t then there is x ∈ S with x < t

Notation:
b = inf S = inf

x∈S
x

Greatest lower bounds of S may, or may not belong to S. For example,
the interval (−2, 3) is bounded below by -100, -15, -4, -2. In fact −2 is
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its infimum (greatest lower bound). The interval [−2, 3) also has −2 as its
infimum.

When the infimum of S belongs to S then it is called the minimum of S.

The interval (−∞,−2) is not bounded below.
If the set S is not bounded below we write (conventionally)

inf S = −∞

Theorem Any nonempty set of real numbers which is bounded
below has an infimum.

Proof.
No, we need not repeat the proof of §3.2. We do as follows.
Let S be a nonempty set which is bounded below. Construct the set T

which contains all the opposites −a of the numbers a of S:

T = {−a ; where a ∈ S}

The set T is nonempty and is bounded above. By the Theorem of §3.2,
T has a least upper bound, call it B. Then its opposite, −B, is the greatest
lower bound for S. Q.E.D.

3.4 Bounded sets

A set which is bounded above and bounded below is called bounded.
So if S is a bounded set then there are two numbers, m and M so that

m ≤ x ≤ M for any x ∈ S. It sometimes convenient to lower m and/or
increase M (if need be) and write |x| < C for all x ∈ S.

A set which is not bounded is called unbounded.
For example the interval (−2, 3) is bounded.
Examples of unbounded sets: (−2, +∞), (−∞, 3), the set of all real num-

bers (−∞, +∞), the set of all natural numbers.
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4 Properties of real numbers

The set of real numbers has the following properties I-V:
I. Order properties

I.1 For any two real numbers a, b one, and only one of the following hold

a < b or b < a or a = b

I.2 Transitivity:

If a < c and c < b then a < b

I.3 Between any two numbers there is another number:

If a < b then there is c so that a < c < b

II. Addition
There is an operation between any two real numbers a, b, called addition,

denoted a + b so that:
II.1 (a + b) + c = a + (b + c) (associativity)
II.2 a + 0 = 0 + a = a (0 is a neutral element)
II.3 Any number a has an opposite, denoted −a, so that a + (−a) = 0.
II.4 a + b = b + a (commutativity)
II.5 If a < b than a + c < b + c.

III. Multiplication
There is an operation between any two real numbers a, b, called multipli-

cation, denoted ab (or a · b) so that:
III.1 (ab)c = a(bc) (associativity)
III.2 a · 1 = 1 · a = a (1 is a neutral element)
III.3 Any number a 6= 0 has an inverse, denoted 1

a
, so that a · 1

a
= 1.

III.4 ab = ba (commutativity)
III.5 a(b + c) = ab + ac (distributivity)
III.5 If a < b and c > 0 then ac < bc.

IV. Archimedean property
Given any number a there is a larger natural number n: a < n.
V. Existence of the least upper bound
Any nonempty set of real numbers which is bounded above has a supre-

mum.
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5 What are the Real numbers?

In practice we do not use the whole infinite sequence of decimals of an irra-
tional number. What we do use are the properties of the given number.

Some of the general properties of real numbers were listed in §4. There
are more, of course, but they can all be deduced from the listed five.

The modern approach is to define the set of real numbers through its
properties:

Definition A set with properties I-V is called the set of real numbers.

This is an axiomatic definition: properties I-V are taken to be axioms -
statements considered to be true. All other properties of real numbers will
be deduced from these five, using logic.

When an axiom system is established there are two major questions:

1) Are there enough axioms to match our intuition on the concept we
want to define?

In our case if we omit axiom V, the first four are also satisfied by the
rational numbers!

(Note: by axiom V the real numbers are a completion of the rationals.)

2) Are they consistent? Is there a set for which the specified axioms are
true?

Well, we do have our model with decimal representation of real numbers.
They satisfy I-III by the way operations are defined, IV is very easy to show.
Only V needed a proof.
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6 Sequences

A sequence is an enumeration of numbers: x1, x2, x3, ...xn, .... The order
matters, so we can not call this a set. In fact, this is a function defined on
the natural numbers: to each natural number n we associate a number xn.
(We chose here to start enumerating with 1 rather than with 0.)

Usual notation: {xn}, or {xn}n if there is a doubt what the index of
enumaration is; n is a dummy variable.

Examples:
1) {n2} is the sequence 12, 22, 32, 42, ...n2, ...
2) {a+nr}n is the sequence a+r, a+2r, a+3r, ...a+nr, .. (an arithmetic

progression ratio r).
It may be more convenient to consider the arithmetic progression starting

with a:
a, a + r, a + 2r, a + 3r, ..a + nr, ...

and then the notation is {a + nr}n≥0.
3) {brn}n≥0 is the sequence b, br, br2, ...brn, ... (a geometric progression).

Definition of a convergent sequence
A sequence {xn} is said to have the limit L (or {xn} converges to L) if

for any ε > 0 there is a natural number N so that

|xn − L| < ε for all n > N

Note that the number N depends on ε (usually the smaller ε the larger
N needs to be), so sometimes we write Nε.

Notation:
lim

n→∞
xn = L or simply xn → L

Exercise: Show that the limit of the sequence { 1
n
} is zero.

Examples:

lim
n→∞

2n + 1

n + 2
= 2 , lim

n→∞

1

n
sin n = 0

lim
n→∞

1

cn
= 0 if |c| > 1
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lim
n→∞

rn = 0 if |r| < 1

The following two exercises are to be left for Wednesday after Exam II.
Exercise: Show that 0.999999... = 1.
Important Exercise: Denote by sn the sum of the first n terms of a geo-

metric progression. Find for which numbers b and r the sum sn is convergent
and find its limit in these cases.

All theorems we leaned about limits of functions are also true for limits
of sequences.

You may have noted the similarity between the definition of limit for
sequences and that of functions. In fact, the two are closely related. The
following theorem shows that to check if a function has the limit L as x → a
it is enough to check this statement on all sequences xn → a:

Theorem A function f(x) has the limit L as x → a:

lim
x→a

f(x) = L

if and only if
for any sequence {xn} which converges to a the sequence {f(xn)} converges
to L:

for any xn → a we have f(xn) → L

The proof of this theorem is not included here.
Example: With this theorem it is very easy to show that the function

f(x) = sin( 1
x
) has no limit as x → 0. How?

Monotone sequences
A sequence {xn} is called increasing if xn < xn+1 for all n.
Similarly, {xn} is called decreasing if xn > xn+1 for all n.
Theorem Any sequence which is increasing (or decreasing) and is bounded

has a limit.
Can you guess what the limit is?
Exercise: Prove this theorem.
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7 Uniform continuity

For many purposes, mere continuity of a function is not enough (continuity
does not behave well when we take sequences of functions). A slightly more
demanding notion works much better.

Definition of uniform continuity A function f defined on an interval
I is called uniformly continuous on I if:
for any ε > 0 there is δ > 0 so that

for all x0, x1 ∈ I with |x1 − x0| < δ we have |f(x1)− f(x0)| < ε (1)

Remark 1: a uniformly continuous function is, in particular, continuous.
Indeed, f(x) is continuous on I if it is continuous at all points in I,

therefore if: for all x0 ∈ I we have limx→x0 f(x) = f(x0).
Now writing what limit means, we get: f is continuous on I if for all x0 ∈ I
and all ε > 0 there is δ > 0 so that if |x− x0| < δ then |f(x)− f(x0)| < ε.

What is the difference between the above statement (of continuity on I)
and the definition of uniform continuity on I? In the above statement the
δ may depend on x0, while in the case of uniform continuity it does not! In
the case of a uniformly continuous function we can choose a δ which works
for all the x0 ∈ I. (But of course, δ will still depend on ε.)

There are many uniformy continuous functions:
Theorem 2 A function continuous on a closed interval is uniformly con-

tinuous.

Before taking a glimpse at the proof of this important theorem, let us
see some examples, and how to recognize uniform continuity (when it is the
case).

Example 1. The function f(x) = 1/x is uniformly continuous on the
interval [1, 2]. (Because it is continuous on a closed interval.)

Functions which are continuous on a non-closed interval may, or may not
be uniformly continuous.

Example 2. The function f(x) = 1/x is uniformly continuous on the
interval (1, 2). (Because it is continuous on the larger interval [1, 2].)
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Example 3. A function which is differentiable on (a, b), with derivative
bounded on (a, b), is uniformly continuous on (a, b).

Indeed, consider as an example the function f(x) = 1/x. Let us show it
is uniformly continuous on (1, +∞).

Let ε > 0. We need to find δ so that (1) holds.
Let x0, x1 ∈ (1, +∞). There is a c between x0 and x1 such that

f(x1)− f(x0) = f ′(c) (x1 − x0) (2)

by the Mean Value Theorem (since f(x) is continuous on [x0, x1], and differ-
entiable.)1

But f ′(x) = −1/x2 which is bounded on (1, +∞):

−1 < −1/x2 < 0 for all x ∈ (1, +∞)

Therefore −1 < f ′(c) < 0; or |f ′(c)| < 1.
Now let us take absolute value on both sides of the equality (2):

|f(x1)− f(x0)| ≤ |f ′(c)| |x1 − x0| < |x1 − x0|

It is clear now that the definition of uniform continuity we can take δ = ε.
Q.E.D.

Example 4. The function f(x) = x is uniformly continuous on (−∞, +∞).
Why?

Remark: If the derivative is not bounded the function may, or may not,
be uniformly continuous.

Example 5. The function f(x) =
√

x is uniformly continuous on (0, 2)
(why?) while its derivative is not bounded on (0, 2) (why?).

Example 6. The function f(x) = 1/x is continuous on the interval (0, 2],
but not uniformly. Let us show this.

To show that a function is not uniformly continuous, it is enough to
find two sequences of points x0 and x1 so that x1 − x0 converge to 0, but
f(x1)− f(x0) does not. (Why?)

For Example 6 take x0 = 1
n

and x1 = 1
2n

.
Example 7. The function f(x) = x2 is uniformly continuous on [0, 100]

(why?), but not on [0, +∞) (why?).

1The number c depends on x1 and on x0.
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What emerges from the above examples is the intuitive picture that a
uniformly continuous function does not ”stretch” distances too much.
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Main ideas in the proof of Theorem 2
Let f be continuous on [a, b]. Then for any x0 ∈ I and any ε > 0 there

is δ = δx0,ε > 0 so that if |x − x0| < δ then |f(x) − f(x0)| < ε (see the
explanations following Remark 1.)

We would like to take the number δ in the definition of uniform continuity
to be the smallest among all the δx0,ε (then the theorem would be proved).
The problem is that there are infinitely many numbers δx0,ε (they are indexed
by all the points x0 ∈ I), and their infimum may be zero.

Now comes the crucial fact that the interval is closed.
A fundamental property of closed intervals (which will not be proved

here) states the following. Suppose a closed interval [a, b] is covered by the
union of infinitely many open intervals. Then finitely many among them are
enough to still cover [a, b].

In our case [a, b] is included in the union of all the intervals Ix0 =
(x0 − δx0,ε , x0 + δx0,ε).

But a number n among them will still be enough to cover [a, b]: there
is x0,1, ..., x0,n so that the union Ix0,1 ∪ ... ∪ Ix0,n includes [a, b]. Now take
δε = min{δx0,1,ε, ..., δx0,1,ε} and Theorem 2 follows.

15


